Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Verena König, ${ }^{\text {a }}$ Thomas R.
Schneider, ${ }^{\text {a }}$ Eva Frank, ${ }^{\text {b }}$ Beatrix Aukszi, ${ }^{\text {b }}$ Gyula Schneider ${ }^{\text {b }}$ and János Wölfling ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077
Göttingen, Germany, and ${ }^{\text {b }}$ Department of Organic Chemistry, University of Szeged, Dóm tér 8., H-6720 Szeged, Hungary

Correspondence e-mail:
wolfling@chem.u-szeged.hu

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.092$
Data-to-parameter ratio $=7.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Methoxy- 1^{\prime}-phenyl-4' β,5-dihydro-1 H pyrazolo[$\left.4^{\prime}, 3^{\prime}: 16,17\right]$ estra-1,3,5(10)-triene

The regio- and stereochemistry of the title compound, $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$, has been established by X-ray analysis. The configuration of the stereogenic centre at $\mathrm{C}-16$ proved to be S and the H atom at $\mathrm{C}-16$ adopts the β position.

Comment

The synthesis of the title compound, (I), via a boron trifluoride diethyl etherate-induced 1,3-dipolar cycloaddition of the intermediate phenylhydrazone derived from the corresponding D-secoestrone aldehyde, will be published elsewhere (Frank et al., 2002). The product has a newly formed stereogenic centre at the $\mathrm{C}-16$ position, and the assignment of the stereochemistry at this position was the reason for the present study.

(1)

The structural study has shown that the H atom at the $\mathrm{C}-16$ adopts the β position (Fig. 1). The B / C and C / D ring junctions are all-trans. Ring A is planar, ring B adopts a distorted halfchair conformation, and ring C displays a chair conformation. The D and E rings have envelope conformations, with atoms C 13 and $\mathrm{C} 16 A$ displaced by 0.651 (4) and $0.436(4) \AA$, respectively, from the planes of the remaining atoms of the corresponding rings.

For the crystal structures of some other related estrone derivatives, see Bes et al. (1997, 1998), Noltemeyer et al. (1996), Hooft \& Kroon (1995), van Geerestein et al. (1987) and Duax et al. (1991).

Experimental

For the synthesis of the title compound, (I), 16,17-seco-3-methoxy-estra-1,3,5(10)16-tetraen-17-al ($298 \mathrm{mg}, 1.00 \mathrm{mmol}$), phenylhydrazine $(0.10 \mathrm{ml}, 109 \mathrm{mg})$ and 2 drops of glacial acetic acid were reacted in ethanol $(10 \mathrm{ml})$. The mixture was stirred for 2 h at room temperature. The resulting phenylhydrazone derivative ($369 \mathrm{mg}, 95 \%$), when treated (after purification) with a catalytic amount of $48 \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($0.07 \mathrm{ml}, 0.25 \mathrm{mmol}$) in ice-cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$, undergoes intramolecular cyclization to afford (I) as a main product ($290 \mathrm{mg}, 79 \%$). After purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ on silica gel, the product was crystallized from a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ light petroleum at 298 K (m.p. 451-453 K). Spectroscopic analysis, ${ }^{1} \mathrm{H}$

Received 29 April 2002

Accepted 24 June 2002
Online 5 July 2002

NMR (CDCl_{3}, δ, p.p.m.): $1.10\left(s, 3 \mathrm{H}, 18 \mathrm{H}_{3}\right), 2.84\left(m, 2 \mathrm{H}, 6 \mathrm{H}_{2}\right), 2.96$ $(d d, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 16 a \beta-\mathrm{H}), 3.36(m, 1 \mathrm{H}, 16 \mathrm{H}), 3.77(s$, $3 \mathrm{H}, 3-\mathrm{OMe}), 4.20(d d, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 16 a \alpha-\mathrm{H}), 6.63(d$, $1 \mathrm{H}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.72(d d, J=8.6 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(t, 1 \mathrm{H}, J$ $\left.=7.4 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.07\left(d, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.23(m, 3 \mathrm{H}$, $1 \mathrm{H}, 3^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m): 14.7 (C-18), 25.9, 26.7, 26.8, 29.6, 32.9, 38.6, 40.8, 44.2, 45.0, 54.8 (C-16), 55.2 (3-OMe), 58.4 (C-16a), 111.5 (C-2), 113.9 (3C, C-4, C-2' and C-6'), 119.3 (C-4'), 126.3 (C-1), 128.9 (2C, C-3' and C-5'), 132.1 (C-10), 137.6 (C-5), 148.9 (C-1'), $157.6(\mathrm{C}-3), 172.1(\mathrm{C}-17)$; analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}$ 80.79, H 7.82, N 7.25\%; found: C 80.62, H 7.96, N 7.45\%.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=386.52$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.120(1) \AA$
$b=8.950(1) \AA$
$c=37.622(4) \AA$
$V=2060.7(5) \AA^{3}$
$Z=4$
$D_{x}=1.246 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Locally modified Stoe-Siemens-
Huber four-circle diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.978, T_{\text {max }}=0.985$
23229 measured reflections

> Mo $K \alpha$ radiation
> Cell parameters from 3250 \quad reflections
> $\theta=2.2-24.7^{\circ}$
> $\mu=0.08 \mathrm{~mm}^{-1}$
> $T=133(2) \mathrm{K}$
> Block, colourless
> $0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.092$
$S=1.09$
1939 reflections
264 parameters
H -atom parameters constrained

Figure 1
View of the molecule of the title compound, with the atomic numbering scheme and 50% probability displacement ellipsoids.
structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This research was supported by the Hungarian Scientific Research Fund (OTKA T032265), the Hungarian Ministry of Education (FKFP 0110/2000) and the Hungarian-German Intergovernmental S\&T Cooperation Program (project No. UNG-43/00).

References

Bes, T., Hajnal, A., Schneider, Gy., Noltemeyer, M. \& Wölfling, J. (1997). Acta Cryst. C54, 372-373.
Bes, M. T., Wölfling J., Usón, I., Pelikán, Sz., Tietze, L. F., Frank, É. \& Schneider, Gy. (1998). Acta Cryst. C54, 1341-1343.
Bruker (1997). SAINT. Version 5.000. Bruker AXS Inc., Madison, Wisconsin, USA.
Duax, W. L., Griffin, J. F. \& Strong, P. D. (1991). Acta Cryst. C47, 1096-1097.
Frank, É., Wölfling J., Aukszi, B., König, V., Schneider, T. R. \& Schneider, Gy. (2002). Tetrahedron. Submitted.

Geerestein, V. J. van, Kanters, J. A. \& Kroon, J. (1987). Acta Cryst. C43, 319322.

Hooft, R. W. W. \& Kroon, J. (1995). Acta Cryst. C51, 721-723.
Noltemeyer, M., Tietze, L. F., Wölfling J., Frank, É. \& Schneider, Gy. (1996). Acta Cryst. C52, 2258.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Siemens (1996). SMART. Version 4.202. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

